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I. Introduction

In this paper we will (1) describe an experiment we performed to measure the propagation

of weakly nonlinear waves into sandy sediment, then (2) develop a method for tracking

wavefronts in the initial rise of a weakly nonlinear wave, and (3) use the method to extract

nonlinear parameters as a function of overpressure.

During 14-17 June 2010, we carried out an experiment at the Naval Surface Warfare

Center, Panama City FL, to observe the development of pressure- time series versus depth

in the seafloor of waves from a weakly nonlinear airgun source. Our motivation was the

lack of experimental studies of nonlinear wave propagation into marine sediments. Prior to

the expermient, we searched open literature for information on this subject, and contacted

many in the nonlinear acoustics community for help locating experimental data. We found

primarily references to papers by Muir1, Bjorno2, Hovem3 in the 1970’s. Muir made

the case for examining dynamic nonlinearity, whereas engineering studies had carried out

static studies with hydraulic presses using dried sediment samples. Bjorno2 carried out an

experiment with saturated sediment, but these were done by sending a linear acoustic wave

through a vessel subjected to a constant pressure load. This is not the same as subjecting

a saturated sediment to a single nonlinear impulse, in which fluid and granular sediment

both are subjected to sudden impulsive stress increases. The analysis of Bjorno’s result by

Hovem3 using Biot theory and fluid nonlinearity gave results consistent with unstressed

sand grains in stress- bearing water4. Namely, the analysis gave results consistent with a

nonlinear parameter in the range 5 to 7, where nonlinear parameter is defined as

β = 1 +
1

2

ρ0
c20

∂2p

∂ρ2

∣∣∣∣
0

= 1 +
∂ log c

∂ log ρ

∣∣∣∣
0

(1)

where ρ is density, p is pressure (or more generally normal stress), c is sound speed, and
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subscript zero means evaluation in the ambient state.

In 2007 a Korean group reported5 a value of the nonlinear parameter for saturated

sandy sediment equal to 73, from a laboratory experiment measuring second harmonic

generation from a constant frequency source. This nonlinearity was attributed to gas bub-

bles rather than granular contacts. Insonification with a linear source is closer to a static,

rather than dynamic, test. Part of our motivation for the 2010 airgun experment was to

determine pressure - time series dynamically in hopes of observing possible departures

from fluid - like behavior. In the category of fluid - like behavior, we include water con-

taining microbubbles, since air and water are both fluids. The nonlinearity coefficient of

bubbly water as a function of gas volume fraction begins at about 3.5 for pure water, then

reaches a maximum of 5000 for a gas volume fraction 6 × 10−5, then falls to 1.2 for pure

air.

The most likely non- fluid mechanism affecting nonlinear propagation in sediments is

the Hertz force6,7 between sediment grains in contact. The Hertz force is proportional to

ε3/2, where ε is the strain rate. In the limit of small strain between dry grains, ε ∝ ρ′ and

p′ ∝ ρ′3/2, where primes denote small but finite perturbations to ambient values. In this

limit, the nonlinearity coefficient from (1) for a dry granular frame with constant numbers

of contact points between grains is proportional to ρ′−1/2, which diverges in the limit of

small stress. The question we will examine is whether the normal stress in a real marine

sediment exhibits non- fluid behavior of the nonlinearity coefficent at low stress.

II. Experimental Setup

We conducted the experiment in the Gulf of Mexico at the Naval Surface Warfare Center,

Panama City FL, during 14 - 17 June 2010, at a location (30.092750N 85.711466666W)
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where the bathymetry was flat and depth was 10m. Figure 1 is a schematic of the ex-

perimental configuration. The experiments were conducted in the Gulf of Mexico in an

area 2 miles east of the entrance to St. Andrews Bay. A 30m long support craft was

anchored about a mile off shore. Divers from NRL used a water jet system to bury a pair

of 12-element, 1m long hydrophone arrays. The top element of each array was positioned

just above the water-sediment interface and an in-water hydrophone was positioned 2m

above the water-sediment interface.

An air gun was mounted on an aluminum frame 0.86m above the seafloor. The vertical

arrays were placed in the sandy sediment, each offset in two directions from directly below

the air gun ports. From the spot directly below the ports, a point 5 feet (1.52m) to the

north was marked, from which east and west offsets of 2 feet (0.61m) were marked to sink

the vertical arrays (with water jets) into the sediment. The horizontal displacement was

made to avoid shadowing of the array hydrophones by their casings and by neighboring

hydrophones. The horizontal offset of each array from the point below the air gun was

thus 1.64 m (Figure 2). Throughout this paper we use sound speed in water 1537.4m/s

from CTD data taken very near our site in June 2003 (Figure 3).

The air gun had a maximum source level of 208 - 226 dB@1m, with bandwidth 20Hz

- 8kHz. The gun’s air chamber of 20 in3 was charged with pressures from 140 psi to 2000

psi (14MPa). The 2000 psi pressure was used during most of the experiments. A series of

high-energy broad band pulses (1 to 8 kHz) with a rep. rate of .03 Hz were transmitted

into the sediment and pressure- time series were recorded as a function of depth by each

of the hydrophone arrays.

One of the arrays was monitored in real time aboard our work boat, while the second
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array was recorded continuously in a bottom mounted pressure vessel. The results pre-

sented here are from the bottom mounted pressure vessel, since the real time system was

subjected to continuous calibration changes.

The reason for conducting an at- sea experiment versus a tank experiment with glass

beads was to sample a real seafloor environment; assemblies of glass beads can have arti-

ficial symmetries (e.g. hexagonal close packing) with preferred propagation directions not

found in nature. Tanks are also plagued with wall reflections.

III. Theory

The theoretical approach to be taken is as follows: First, we investigate the behavior of a

broadband linear source near the seafloor as a baseline. Second, we examine the ability

of fluid nonlinearity to steepen propagating wavefronts and compare to experimental re-

sults. Third, we investigate the ability of granular nonlinearity to explain the experimental

results.

A. Linear Theory

For the linear analysis, a point source near a fluid- fluid seafloor interface is resolved

into plane waves, and then plane wave Rayleigh reflection and transmission coefficients are

converted to cylindrical values by the appropriate azimuthal integrals in the water and the

seafloor. This approach has been used in examining acoustic transmission from water to

air8. Results from linear theory are compared with experimental results. The discrepancies

with linear theory are examined with weakly nonlinear theory for fluid - like media which

is also found inadequate. Although shear waves are initiated in the seafloor, they are quite

weak in the near field (small depths) due partly to high porosity. Also, under stress, shear

waves may lead to media failure (slips).
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In unbounded water, the pressure field of a point source with time dependence

exp(−iωt) normalized to pressure p0 at radius r0 and its spatial Fourier transform are

given by8

p = p0r0
exp(ikwr)

r
=
p0r0
2π2

∫
exp(iq · r)

[
(q2 − k2w)−1 + i

π

2kw
δ(q − kw)

]
d3q (2)

where kw = ω/cw, cw is sound speed in water, and q = |q|. Values for the experiment

were cw = 1537.4m/s, and sound speed in the bottom cb = 1711m/s. The density of the

seafloor relative to water was 2.0.

We adopt a Cartesian coordinate system and place the point source at (x, y, z) =

(0, 0, zs), where zs > 0 is height above the seafloor, and z = 0 at the seafloor.

Carrying out the qz integration in (2), the acoustic field without the seafloor interface

is

p =
p0r0
2π2

∫
d2q⊥ exp(iq⊥ · r)F (z, q⊥), (3)

F (z, q⊥) =

 iπu−1 exp i|z − zs|u, q2⊥ < k2w

πu−1 exp−|z − zs|u, q2⊥ > k2w

(4)

where u =
√
|k2w − q2⊥| and q⊥ = (qx, qy).

1. Addition of the Seafloor Interface

A seafloor interface at z = 0 is added by use of appropriate plane wave reflection coeffi-

cients. Snell’s law dictates constancy of the horizontal wavenumber q⊥ across the interface.

Three horizontal wavenumber regimes are considered in both the water column and the

seafloor. We retain evanescent waves, since results will be calculated in the near field.

Separate expressions for the water column and seafloor follow. Let kb = ω/cb, where cb is

the sound speed in the seafloor, and define absolute value vertical wavenumbers
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u =
√
|k2w − q2⊥| = qwz, s =

√
|k2b − q2⊥| = qbz (5)

1. z > 0 (Water Column)

q2⊥ < k2b : F (z, q⊥) = iπu (exp i|zs − z|u+R0 exp i(zs + z)u) (6)

R0 =
u− αs
u+ αs

α =
ρw
ρb

(7)

k2b < q2⊥ < k2w : F (z, q⊥) = iπu (exp i|zs − z|u+R1 exp i(zs + z)u) (8)

R1 =
u− iαs
u+ iαs

(9)

q2⊥ > k2w : F (z, q⊥) = π
u (exp−|zs − z|u+R0 exp−(zs + z)u) (10)

2. z < 0 (In the Sea Floor)

q2⊥ < k2b : F (z, q⊥) = iπu (1 +R0) exp i(zsu− sz) (11)

k2b < q2⊥ < k2w : F (z, q⊥) = iπu (1 +R1) exp izsu exp sz (12)

q2⊥ > k2w : F (z, q⊥) = π
u (1 +R0) exp(−zsu+ sz) (13)

Keeping r fixed, we carry out the horizontal wavenumber integral in (3) using d2q⊥ =

dq⊥ · q⊥dφ,where φ is the azimuthal angle (dropping subscript ⊥ from q⊥ and r⊥ for

notational simplicity):

p =
p0r0
2π2

∫
d2q exp(iq · r)F (z, q) =

p0r0
2π2

∫ ∞
0

dqF (z, q)

∫ 2π

0

qdφ exp iqr cosφ

=
p0r0
π

∫ ∞
0

J0(qr)F (z, q)qdq,

(14)
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where J0 is the zero order Bessel function. Then (14) becomes

p

p0r0
= i

∫ kb

0

1 +R0

u
exp i(zsu− sz) J0(qr) q dq

+ i

∫ kw

kb

1 +R1

u
exp izsu exp sz J0(qr) q dq

+

∫ ∞
kw

1 +R2

u
exp(−zsu+ sz) J0(qr) q dq

(15)

Reflection coefficients Ri for the three wavenumber regions of (15) may be expressed as

1 +R0

u
=

2

u+ α
√
u2 − u21

, u21 = k2w − k2b

1 +R1

u
=

2

u+ iα
√
u2 − u21

, α =
ρw
ρb

1 +R2

u
=

2

u+ α
√
u2 + u21

(16)

In (16), the expressions involving R0 and R1 are restatements of (7) and (9), while that

for R2 is a restatement of R1 for high wavenumber q > kw.
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2. Amplitude, Phase, and Nearly Spherical Waves

The airgun pulses as received on the arrays had characteristic durations of order 2ms,

with peak frequency approximately 600Hz. Numerical synthesis of these pulses was per-

formed with integrals over a frequency range 1-1800 Hz, using environmental values quoted

after (2). We will show from evaluation of (15-16) that in the near field (including the near

seafloor), amplitude is very closely related to phase throughout the relevant frequency

range. We will also find that phase and amplitude surfaces for downward propagating

waves remain very nearly spherical in both water column and seafloor.

Our basis of comparison for the experimental time series will be first, the constancy of

∂ log p/∂t on a constant phase surface for a linear wave in a homogeneous fluid, and second

the near constancy of ∂ log p/∂t on the numerical results from (15) across the seafloor.

For a linear spherical pulse in a homogeneous medium, the pressure from a point

source may be expressed as

p(r, t) = f(r − ct)/r (17)

In a coordinate system fixed in the medium, (17) gives

∂ log p/∂t = −cf ′(r − ct)/f(r − ct). (18)

On a constant phase surface r − ct = const, ∂ log p/∂t by (18) remains constant.

When evaluating a complex pressure field such as (15) at a single frequency, phase

surfaces are well defined. When a broadband impulsive wave is received on a hydrophone,

one has only amplitude to deal with. Even if one could assume the sound speed perfectly

known, one would have to deal with the fact that phase surfaces move at speed c, but in

the near field, ray paths for computing phase are only a high frequency approximation. We
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have chosen an empirical approach, in which linear benchmark calculations synthesized a

broadband pulse by integrating (15) over frequencies, and evaluated pressure- time series

at the hydrophone locations.

a. Amplitude as Proxy of Phase

The experimental pulses as received on the arrays had characteristic timescales of order

2ms, with spectal peak at approximately 600Hz. Numerical construction of a baseline

linear solution for comparison with these pulses was performed integrating over a frequency

range 1-1800 Hz. We will show from evaluation of (15) that in the near field, amplitude

is very closely correlated with phase throughout the relevant frequency range, even after

propagation through the seafloor.

The advantage of amplitude tracking versus wavefront (phase) tracking for a broad-

band pulse in the near field is summarized as follows: (1) In order to track a wavefront,

one has to calculate ds/dt = c along a ray, with s the arc length along the ray. Rays are a

high frequency approximation, while the farthest phone from the source is less than three

wavelengths for cw = 1537.4m/s at 1800Hz. (2) If one were to attempt wavefront tracking,

then environmental uncertainties in cb could be mistaken as results of nonlinearity. Values

of cb are available for selected cores taken in past experiments, but amplitude is measured

in situ as part of the experiment, so is more faithful to the array location.

Our baseline linear solution is taken for a source whose amplitude referenced to 1m is

one cycle of a 600Hz sinusiod:

p(t, 1m) =
p1
2

(
1 + cos(π − ω0t)

)
, 0 ≤ t ≤ 2π/ω0, (19)

and p(t, 1m) = 0 outside this range. Here ω0 = 2π ·600Hz, and p1 is an arbitrary reference
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pressure at 1m. The form of (19) was chosen to approximate the initial rise of measured

pressure pulses.

Figure 4 summarizes simulated peak pressures on the array elements from the numer-

ical evaluation of (15), normalized to the peak value 1m from the source. Peak pressures

follow an approximate power law r−1.15, where r is the slant range from the source to

array elements. The use of slant range is justified by the fact that the fractional difference

in ray path length and slant range over the array was a maximum of 0.003 at phone 11,

10cm below the seafloor.

The fractional power law is not an indication of nonlinearity, but reflects that the

transmission coefficient across the seafloor increases with horizontal distance out to the

array location. Each array element receives energy that has crossed the seafloor in slightly

different regions with different transmission coefficients. Critical incidence (grazing angle

26◦) occured just past the array at a horizontal range 1.76m.

We examined contour plots of the wave synthesized from (15-16) as it progressed down

into the sediment, and found the wavefronts surprisingly spherical. Wavefront sphericity is

illustrated by the correlation between the slant range from source to points in the sediment,

and the phase of the individual frequency components of the wave from (15-16) over a range

1 - 1800Hz: For two complex quantities A and B, define the volume correlation coefficient

C(A,B) ≡
|
∫
A ·Bdv|2

|
∫
A2dv ·

∫
B2dv|

(20)

where the integration volume is a cylinder with vertical axis extending from the seafloor

directly below the source to a depth of 1m, and out to the radius of 1.64m where the array

is located.
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In Figure 5 we show the differential correlation 1−C(φ, r) vs frequency f , represented

as kwzs/π = 2fzs/cw where zs = .86m, φ is the phase of the complex solution (15-16), and

r is the slant range from the source to a point in the integration volume. For most of the

frequency range, 1−C(φ, r) < 10−4. This quantifies the near sphericity of the synthesized

wave from (15-16).

Further confirmation of the closeness of the wave to a spherical wave is shown in

Figure 6, which gives 1 − C(φ · A, 1), where A is the amplitude of the wave. (The

correlation with unity is chosen for convenience; any nonzero constant gives the same

result). For most of the frequency range, 1 − C(φ · A, 1) < 10−3. This shows that

the product of amplitude and phase is very nearly constant over the frequency range

1 - 1800Hz. For a linear spherical wave in a homogenious medium, the correlation is exact

for all frequencies.

IV. Experimental Results

Figure 7 shows a typical pressure - time series display for airgun shot number 15, with

pressure represented as hydrophone voltage, with conversion factor 10kPa/Volt. The am-

plitude markers (dots) are positioned as follows: The seafloor phone (number 11) is marked

at a desired value in the useful range of the phone (in Fig. 5, 1.75v). The useful range

for hydrophone voltage is above zero, and less than the clipping value 3.5v. Above 1.75v,

however, detailed analysis of the waveforms revealed sampling artifacts possibly due to

overloading of the hydrophone. Calculations were made for marker values at phone 11

from 0.2v to 1.75v. Phone 10 was erratic throughout the experiment, and is not included

in any of the results.

Time series from other phones are marked at values determined from the empirical
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power law r−1.15 as shown in Fig. 4. These markers are intended to show a point on

the same wavefront as that passing through the marker for phone 11, including effects of

spreading and variation of transmission coefficient with range along the seafloor.

a. Ability of Amplitude Tracking to Probe the Seafloor

Before considering nonlinearities, we will demonstrate that the amplitude tracking

proposed above gives reasonable results for sound speed in the seafloor. The motivation

for amplitude tracking is to use the wave itself as a probe, instead of assuming a known

value of cb. If cb is imposed as known, then any early or late arrivals could easily be

confused with the nonlinear dependence of c with pressure.

We use data from the first day of testing; the second day was plagued with equipment

problems. We took 72 shots, exemplified by Fig. 7, using the amplitude markers as

described above. We propose that the wavefronts carrying the amplitude markers originate

at a common point at time t0. Since we are in the near field, we compared ray paths obeying

Snell’s law (Fig. 2), and slant- range paths with no deflection at the seafloor in order to

test sensitivity to propagation paths, and found insignificant differences.

Taking the arrival time of the amplitude marker at phone n (Fig. 2) to be tn, one has

tn = t0 + rn,w/cw + rn,b/cb (21)

where rn,(w,b) denotes the propagation path length in water and seafloor. Evaluating

t1 − t11 eliminates the unknown t0. With path lengths known from either rays obeying

Snell’s law, or slant ranges, and taking cw known, one finds an expression which yields the

path averaged cb (the path to phone 11 is entirely in the water column):

t1 − t11 = (r1,w − r11,w)/cw + r1,b/cb (22)
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The result for cb is shown in Figure 8 for 72 ray paths obeying Snell’s law. (On this series

of 86 shots, the first 14 were engineering tests done at low pressure with the airgun hanging

off the workboat.) The results for slant range paths with no deflection at the seafloor gives

an increase in cb which amounts to a shift by about the size of the plotting character. To

be more specific, rays obeying Snell’s law give average cb and standard deviation (1725.6

± 10.1)m/s, while slant range paths with no deflection at the seafloor give (1730.0 ±

10.5)m/s. The Snell’s law result is slightly higher than one standard deviation from the

assumed value 1711m/s. We note that the both the assumed seafloor sound speed of

1711m/s and the wavefront tracking value 1725.6 m/s fall within the range 1708-1771m/s

found in− situ9 during Sax99.

b. Time Series in the Seafloor

Figure 9 summarizes data for shots 15 - 86 taken on the first day of the expermient.

(The second day was plagued by equipment failures.) The data are values of ∂ log p/∂t

evaluated at the amplitude markers as shown in Fig. 7. Also shown is the linear benchmark

solution computed from eq. (14) using the same amplitude marking method used in

the experimental curves. It is apparent that the linear benchmark value of ∂ log p/∂t

remains nearly constant as the wave propagates through the seafloor. The measured values,

however, are low in the water column (phone 12), and increase significantly as the wave

enters the seafloor and continue to increase as the wave propagates to a depth of one meter

in the seafloor.

c. Effects of Fluid-Like Nonlinearity

Can the quadratic nonlinearity of a fluid explain the increase of ∂ log p/∂t with propa-

gation path in the sediment? To answer this, we will give a comparison with the nonlinear
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acoustic model NPE10. NPE is a time domain formulation for the evolution of a weakly

nonlinear wave following a wavefront through a nearly homogeneous medium. The NPE

for spherical waves is:

Dtp
′ = −β p

′

ρc
∂rp
′ − cp

′

r
, Dt ≡ ∂t + c∂r, (23)

where Dt is the time derivative in a wave- following frame moving at speed c. When the

nonlinear term is dropped, linear spherical waves of the form (17) satisfy (23). From (23)

we find

Dt log p′ = − β
ρc
∂rp
′ − c

r
(24)

The time derivative fixed in the medium is ∂t = Dt − c∂r, and for homogeneous media, ∂t

commutes with Dt. Then (24) yields

Dt∂t log p′ = − β
ρc
∂r∂tp

′ =
β

ρc
∂t

(
1

c
∂tp
′ +

p′

r

)
, (25)

where the second equality is a result of the linear portion of p′ being of the form (17). In

the linear approximation, the wave- following range derivative is c−1Dt. Eq. (25) may

now be integrated along a wave- following radial to give

∂t log p′(r1)− ∂t log p′(r11) = β

∫ r1

r11

1

ρc2

(
1

c
∂2t p
′ +

∂tp
′

r

)
dr, (26)

where β is defined as a path- averaged value (β may vary with range and overpressure).

Carrying out the integral in (26) using shot- average values of ∂t log p′ for data shown in

Fig. 9 yields β = 5.56 × 103. In (26), r1 and r11 are radials to the deepest hydrophone

and the seafloor hydrophone (Fig. 2), with respective values 2.480m and 1.853m for two

of the three cases given in Table 1 below.
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The sensitivity of our estimate β to the amplitude tracking scheme was tested as

follows. The data shown in Fig. 9 were analyzed using the empirical power law p ∝ 1/r1.15

as in Fig. 4. When the power law index was varied between 1.00 (marker points moved

to higher values) and 1.35 (marker points moved to lower values), the values for β varied

between 4.74×103 and 1.16×104 respectively.

Keeping the power law fixed at 1/r1.15, we found the following values of effective

nonlinear coefficient with amplitude:

TABLE 1. Variation of β with Amplitude.

———————————————————–

p11(v) β

0.2 4.16× 104

0.531 1.41× 104

1.75 5.56× 103

———————————————————–

The entries in Table 1 resulted from shots with the airgun mounted in the aluminum

frame as discussed above, except for the one for p11 = 0.531v. This value was taken from

a low pressure engineering test in which the airgun was suspended by a cable 20 feet above

the seafloor.

Our amplitude tracking method suggests a high nonlinearity coefficient β which de-

creases with increased amplitude. Fluids including air and water are sometimes represented

with a polytropic equation of state p ∝ ργ + const. Such an equation of state gives a con-

stant β as long as the polytropic index γ is constant. High values of nonlinearity coefficient

may be realized in bubbly fluids, and also in granular media. The nonlinearity coefficient
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for bubbly water reaches a maximum of about 5000 for air volume fraction 6×10−5, while

values for dry clay sediments11 fall in the approximate range 100 to 1000. We cannot rule

out the possibility that gas bubbles and granular media nonlinearities are both related to

our results.

If the normal stress p′ is partially due to Hertzian contacts6 between grains, β would

vary with the inverse square root of amplitude in the limit of small strain (see discussion

at the end of Sec. I). If one takes the upper and lower values of p11 in Table 1 to define

a power law, one finds β ∝ p −0.928
11 , which falls off faster than the inverse square root

variation for Hertzian contacts.

V. Discussion

Our experiment examined pressure- time series in sandy sediment for weakly nonlinear

waves resulting from airgun shots in the water column. Calculations from linear theory

for a plane fluid- fluid surface in the range 1 - 1800Hz resulted in waves remaining nearly

spherical across the seafloor, despite the change in density and sound speed at the seafloor

(Figs. 3-4). This is probably related to the fact that our hydrophones were in the near

field of the source. We employed an empirical amplitude marking scheme motivated by

Fig. 4 to track equivalent wavefronts down the hydrophone array. As shown in Fig. 8,

amplitude marking gives a sound speed for the sediment close to the assumed value 1711

m/s and within the range of in− situ measurements9.

As shown in Fig. 9, the log- pressure time derivative for a linear pulse benchmark

calculated from eq. (14), using the same amplitude marking scheme as for the data,

remains nearly constant with depth, while the experimental values averaged over 72 shots

increases significantly with depth as the wave progresses down the array. This indicates
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that the experimental results are not in agreement with linear theory. The high values for

the nonlinearity coefficient in our analysis (Table 1) are suggestive of both bubbly media

and granular media. The general decrease of the nonlinearity coefficient with increased

overpressure seen in Table 1 is qualitatively suggestive of Hertzian contacts between grains.

Comparison of our results in Table 1 with others for granular and porous media

nonlinearity is as follows. As we mentioned earlier, Hovem’s analysis3 of an experiment

on saturated but unstressed marine sediment implies nonlinear parameters in the range

5 to 7. A Korean experiment5 using second harmonic generation gave a value 73, which

was attributed to gas bubbles. Ostrovsky11 quotes values of 800 for marble, 102 − 103

for clay marine sediments, and 104 or more for granite and other solids. Ostrovsky11

also presents a theory and experimental results for a quadratic nonlinearity involving fluid

flow in micropores. The nonlinear parameter for the pore flow mechanism in a plastic

medium was found to reach a peak value of 105 for porosity equal to 6.6 × 10−6. The

nonlinear parameter falls rapidly with increasing porosity, attaining a value 370 for porosity

2.6 × 10−3. The porosity in the upper seafloor at a location northwest of our area was

found in the Sax99 experiment to be approximately 0.38. At this high value, the pore

flow mechanism is quite weak. To our knowlege, none of the other nonlinear mechanisms

discussed here predicts the decrease of nonlinearity coefficient with increased amplitude.

We recommend further laboratory and field experiments to do the following: (1) A null

experiment with source and array suspended in water. (2) An independent investigation

into our amplitude tracking scheme for a solitary broadband nonlinear pulse. (3) A field

experiment done in conjunction with in situ measurements for sound speed, density, and

gas volume fraction.
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Figure 1. Experimental configuration. Front view above; Top view below.
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Figure 2. Schematic of airgun source above the seafloor and ray paths from Snell’s law to

each of the array elements.
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Figure 3. Sound speed profiles taken in our area in June 2003.
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Figure 4. x: Peak pressures from linear field of eqs. (15-16) for a 600Hz source at the

airgun location, normalized to the pressure at 1m. o: Empirical power law approximating

the result. Dash: 1/r (slant range) dependence.
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Figure 5. Differential correlation between the phase of a sinusoidal wave (including seafloor

interface) and the slant range integrated over the cylindrical volume centered on the point

below the source, extending out to the array range. The abscissa is the dimensionless

wavenumber in the water, and expressed also as frequency (1 - 1800Hz).
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Figure 6. Differential correlation between the phase- amplitude product of a sinusoidal

wave, and a constant value. Other details are as in Fig. 5.
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Figure 7. Amplitude marking scheme for pressure- time series motivated by Fig. 4. Hy-

drophone pressure is expressed in volts, with conversion 10kPa/v.
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Figure 8. An example of the amplitude marking scheme for determination of in situ

sediment sound speed using eq. (22). Dots: ray paths from Snell’s law; + signs: straight

ray paths with no deflection at the seafloor.
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Figure 9. Log- pressure time derivative at marker locations at each array element (phone

10 was defective). Dots: individual data from 72 shots. Vertical bar: Data averaged over

72 shots. Plus sign: Linear broadband wavenumber integral from eq. (14) integrated over

1 - 1800 Hz illustrating near constancy of the log- pressure time derivative.
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